Assessing the vulnerability of cities to climate change: A new index proposal for Türkiye cities
DOI:
https://doi.org/10.47818/DRArch.2025.v6i2173Keywords:
climate–adaptive city, climate change, resilient city, vulnerability assessment indexAbstract
On a global scale, as cities continue to grow and climate change brings increasing hazards, the vulnerability and risk levels for cities are also rising. Assessing the risk and vulnerability of urban areas has become more vital now than in previous decades. In this context, the climate–adaptive city approach is gaining importance alongside sustainable development. Türkiye’s geographical location is considered one of the most vulnerable regions in terms of climate change, due to decreasing precipitation and rising temperatures. In the literature, some studies primarily evaluate the full range of risks associated with climate change, while others develop a climate–adaptive city approach that focuses on a single risk. However, the consequences of climate change vary across regions and countries. In this study, the vulnerability of cities to climate change is discussed separately for each risk. Vulnerability criteria are considered separately for drought, sea-level rise, heavy rainfall, and extreme heat. For each risk, indicators of the impact, pressure, vulnerability, resistance, and adaptive capacity that contribute to the risk are identified. Methodologically, relevant studies in the literature were compiled, previous studies were utilized in determining the indicator, and new indicators were developed. As a result, a holistic approach has been developed to assess the vulnerability of cities to climate change across all risks. This makes it possible to identify both how cities remain unprepared for the consequences and risks of climate change and, on the other hand, the climate–adaptive aspects of cities. This study is intended to contribute to researchers working on urban resilience as well as to urban municipalities. In conclusion, a guiding index has been put forward to inform planning and decision-making processes for the creation of a climate–adaptive city.
Downloads
References
Akbulut Başar, A. (2023). An approach proposal to vulnerability analysis in urban resilience. lnternational Journal of Geography and Geography Education, (48), 145-164. https://doi.org/10.32003/igge.1177863
Anazawa, T. M., Feitosa, F. d. F., & Monteiro, A. M. V. (2013). Vulnerabilidade socioecológica no litoral norte de São Paulo: Medidas, superfícies e perfis de ativos. Geografia, 38(1), 189-208.
Balica, S. F., Wright, N. G., & van der Meulen, F. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural Hazards, 64, 73-105. https://doi.org/10.1007/s11069-012-0234-1
Barthel, S., Sörlin, S., & Ljungkvist, J. (2010). Innovative memory and resilient cities: echoes from ancient Constantinople. C. Isendahl, F. Herschend, & G. Nordquist (Eds.), In The urban mind: Cultural and environmental dynamics (pp. 391-405). Uppsala University Press.
Binita, K. C., Shepherd, J. M., & Gaither, C. J. (2015). Climate change vulnerability assessment in Georgia. Applied Geography, 62, 62-74. https://doi.org/10.1016/j.apgeog.2015.04.007
Bogardi, I. (2006). Coping with uncertainties in flood management. In Transboundary floods: Reducing risks through flood management (pp. 219-230). Springer Netherlands.
Carmin, J., Anguelovski, I., & Roberts, D. (2012). Urban climate adaptation in the global south: Planning in an emerging policy domain. Journal of Planning Education and Research, 32(1), 18-32. https://doi.org/10.1177/0739456X11430951
Cazenave, A., & Cozannet, G. L. (2014). Sea level rise and its coastal impacts. Earth's Future, 2(2), 15-34. https://doi.org/10.1002/2013EF000188
Chambers, R. (1989). Editorial introduction: Vulnerability, coping and policy. IDS Bulletin, 20(2), 1-7. https://doi.org/10.1111/j.1759-5436.1989.mp20002001.x
Change, I. P. O. C. (2001). Climate change 2007: Impacts, adaptation and vulnerability. Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Genebra, Suíça.
Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., Qin, D., & Woodworth, P. L. (2001). Changes in sea level. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.). In Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel (pp. 639-694).
Cowell, P. J., Stive, M. J., Niedoroda, A. W., Swift, D. J. P., de Vriend, H. J., Buijsman, M. C., Nicholls, R. J., Roy, P. S., Kaminsky, G. M., Cleveringa, J., Reed, C. W., & de Boer, P. L. (2003). The coastal-tract (part 2): Applications of aggregated modeling of lower-order coastal change. Journal of Coastal Research, 19(4), 828-848. https://www.jstor.org/stable/4299223
Croce, S., & Vettorato, D. (2021). Urban surface uses for climate resilient and sustainable cities: A catalogue of solutions. Sustainable Cities and Society, 75, 103313. https://doi.org/10.1016/j.scs.2021.103313
Çimen, N. (2023). Büyük kentler ve küresel isinma ilişkisi: Kocaeli-Şanlıurfa karşılaştırması [Master’s thesis, Harran University]. Harran Üniversitesi Açık Erişim.
Dincer, Ş. E., & Yalçıner Ercoşkun, Ö. (2024). Urban resilience index study on Ankara metropolitan area. ICONARP International Journal of Architecture and Planning, 12(2), 504-532. https://doi.org/10.15320/ICONARP.2024.293
Ercanlı, Ç. (2024). A framework for the examination of urban coastal areas against the risk of sea level rise and evaluation of design strategies: The cases of Izmir and Thessaloniki. In E3S Web of Conferences, 585, 02001. EDP Sciences. https://doi.org/10.1051/e3sconf/202458502001
Feindouno, S., Guillaumont, P., & Simonet, C. (2020). The physical vulnerability to climate change index: An index to be used for international policy. Ecological Economics, 176, 106752. https://doi.org/10.1016/j.ecolecon.2020.106752
Franklin, D., & Andrews, J. (2012). Megachange: The world in 2050. Wiley.
Freni, G., & Liuzzo, L. (2019). Effectiveness of rainwater harvesting systems for flood reduction in residential urban areas. Water, 11(7), 1389. https://doi.org/10.3390/w11071389
Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33(8). https://doi.org/10.1029/2006GL025734
Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2-3), 90-104. https://doi.org/10.1016/j.gloplacha.2007.09.005
Gliksman, D., Averbeck, P., Becker, N., Gardiner, B., Goldberg, V., Grieger, J., Handorf, D., Haustein, K., Karwat, A., Knutzen, F., Lentink, H. S., Lorenz, R., Niermann, D., Pinto, J., G., Queck, R., Ziemann, A., & Franzke, C. L. E. (2023). A European perspective on wind and storm damage–from the meteorological background to index-based approaches to assess impacts. Natural Hazards and Earth System Sciences, 23(6), 2171-2201. https://doi.org/10.5194/nhess-23-2171-2023
Greenwalt, J., Raasakka, N., & Alverson, K. (2018). Building urban resilience to address urbanization and climate change. In Resilience (pp. 151-164). Elsevier. https://doi.org/10.1016/B978-0-12-811891-7.00012-8
Gülpınar Sekban, D. Ü., & Acar, C. (2024). Combining climate change adaptation strategies with spatial analysis and transforming urban open spaces into landscape design solutions: Case of Trabzon city, Türkiye. Journal of Urban Planning and Development, 150(3), 05024020. https://doi.org/10.1061/JUPDDM.UPENG-4809
Hajibayov, F. (2017). Evaluating the impact of floods on planning in Edirne city in terms of global climate change [Master thesis, İstanbul Technical University].
Huebner, S. (2025). Floating and stilted structures as strategies in coastal climate adaptation: Local monsoon adaptation practices and implications for flood risk management. Climate Risk Management, 49, 100719. https://doi.org/10.1016/j.crm.2025.100719
IPCC. (2007). Climate change 2007: Synthesis report. Contribution of WorkingGroups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (C. W. Team, R. K. Pachauri, & A. Reisinger Eds.). Geneva, Switzerland.
Jiménez, P. A., Vilà-Guerau de Arellano, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., García-Bustamante, E., & Dudhia, J. (2011). The effect of heat waves and drought on surface wind circulations in the northeast of the Iberian Peninsula during the summer of 2003. Journal of Climate, 24(20), 5416-5422. https://doi.org/10.1175/2011JCLI4061.1
Jubeh, G., & Mimi, Z. (2012). Governance and climate vulnerability index. Water Resources Management, 26, 4147-4162. https://doi.org/10.1007/s11269-012-0137-7
Kahraman, E. D., & Aydın, S. (2016). Deniz seviyesinin yükselmesi tehdidine karşı kıyı kentlerinin morfolojik açıdan kırılganlık düzeylerinin belirlenmesi. TÜCAUM Uluslararası Coğrafya Sempozyumu. Ankara, Türkiye, 675-681.
Kim, H. G., Lee, D. K., Jung, H., Kil, S.-H., Park, J. H., Park, C., Tanaka, R., Seo, C., Kim, H., Kong, W., Oh, K., Choi, J., Oh, Y.-J., Hwang, G., & Song, C.-K. (2016). Finding key vulnerable areas by a climate change vulnerability assessment. Natural Hazards, 81, 1683-1732. https://doi.org/10.1007/s11069-016-2151-1
Leary, N., Conde, C., Nyong, A., Kulkarni, J., & Pulhin, J. (Eds.). (2008). Climate change and vulnerability. Earthscan Climate.
Leichenko, R. (2011). Climate change and urban resilience. Current Opinion in Environmental Sustainability, 3(3), 164-168. https://doi.org/10.1016/j.cosust.2010.12.014
Menezes, J. A., Confalonieri, U., Madureira, A. P., Duval, I. d. B., Santos, R. B. d., & Margonari, C. (2018). Mapping human vulnerability to climate change in the Brazilian Amazon: The construction of a municipal vulnerability index. PLOS One, 13(2), e0190808. https://doi.org/10.1371/journal.pone.0190808
Mora-Melià, D., López-Aburto, C. S., Ballesteros-Pérez, P., & Muñoz-Velasco, P. (2018). Viability of green roofs as a flood mitigation element in the central region of Chile. Sustainability, 10(4), 1130. https://doi.org/10.3390/su10041130
Munich Re Group. (2003). TOPICS, Annual Review: Natural Catastrophes 2002. http://www.munichre.com/ (Accessed: December 5, 2004)
Newton, P. W., & Doherty, P. (2014). The challenges to urban sustainability and resilience. In Resilient Sustainable Cities (pp. 7-18). Routledge.
Pelling, M. (2003). The vulnerability of cities: Natural disasters and social resilience. Earthscan Publications.
Pickett, S. T. A., Burch Jr., W. R., Dalton, S. E., Foresman, T. W., Grove, J. M., & Rowntree, R. (1997). A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosystems, 1, 185-199. https://doi.org/10.1023/A:1018531712889
Rezvani, S. M. H. S., de Almeida, N. M., & Falcão, M. J. (2023). Climate adaptation measures for enhancing urban resilience. Buildings, 13(9), 2163. https://doi.org/10.3390/buildings13092163
Roots, E. F. (1989). Climate change: High-latitude regions. Climatic Change, 15(1), 223-253. https://doi.org/10.1007/BF00138853
Salata, S., Velibeyoğlu, K., Baba, A., Saygın, N., Couch, V. T., & Uzelli, T. (2022). Adapting cities to pluvial flooding: The case of Izmir (Türkiye). Sustainability, 14(24), 16418. https://doi.org/10.3390/su142416418
Sılaydın Aydın, M. B. (2021). İklim değişikliğine kentsel uyum politikaları kapsamında kırılganlık analizlerinin önemi ve ölçek temelli yaklaşım. III. Uluslararası Şehir, Çevre ve Sağlık Kongresi (pp. 99-106).
Sılaydın Aydın, M. B., Erdin, H. E., & Kahraman, E. D. (2017). Mekansal yapı özellikleri açısından iklim değişikliğine karşı risk taşıyan bölgelerin saptanması, İzmir. Planlama Dergisi, 27(3), 274-285. https://dx.doi.org/10.14744/planlama.2017.61587
Tallis, H. T., Ricketts, T., Guerry, A. D., Nelson, E., Ennaanay, D., Wolny, S., ... & Sharp, R. (2011). InVEST 2.1 beta user’s guide. The natural capital project, 1-275.
Tokgöz, G., Karaahmetli, S., & Tokgöz, S. (2022). Kentsel peyzajlarda geçirimli beton kullanımı ve özelliklerinin değerlendirilmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 1067-1078. https://doi.org/10.29130/dubited.1078837
Tonmoy, F. N., El‐Zein, A., & Hinkel, J. (2014). Assessment of vulnerability to climate change using indicators: a meta‐analysis of the literature. Wiley Interdisciplinary Reviews: Climate Change, 5(6), 775-792. https://doi.org/10.1002/wcc.314
Toy, S., & Eren, Z. (2023). Türkiye’de kentlerin iklim dirençliliğini arttırmak için kentsel özelliklerin parametre haline getirilmesine yönelik öneriler. Çevre Şehir ve İklim Dergisi, 2(4), 324-347.
Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., Peterson, P., & Evans, T. (2021). Global urban population exposure to extreme heat. Proceedings of the National Academy of Sciences, 118(41), e2024792118. https://doi.org/10.1073/pnas.2024792118
Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensene, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A. (2003): A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences, 100(14), 8074-8079. https://doi.org/10.1073/pnas.1231335100
UNDESA, U. (2012). Population dynamics. UN System task team on the post-2015 UN development agenda, United Nations, May.
UNEP, F. (2012). Principles for sustainable insurance. https://www.unepfi.org/insurance/insurance/ (Accessed 20 March 2023).
Villagrán de León, J. C. (2006). Vulnerability: A conceptional and methodological review. UNU-EHS.
Wharton, G., & Gilvear, D. J. (2007). River restoration in the UK: Meeting the dual needs of the European Union Water Framework Directive and flood defence? International Journal of River Basin Management, 5(2), 143-154. https://doi.org/10.1080/15715124.2007.9635314
Wilkinson, C. (2011). Social-ecological resilience: Insights and issues for planning theory. Planning Theory, 11(2), 148-169. https://doi.org/10.1177/1473095211426274
World Bank. (2021). Nature Based Solutions. https://naturebasedsolutions.org (Accessed 10 March 2022).
Xie, X., & Zheng, Y. (2017). Research on the evaluation indicator system for climate adaptive cities: A case study of Beijing. Chinese Journal of Urban and Environmental Studies, 5(1), 1750007. https://doi.org/10.1142/S2345748117500075
Yari, A., Mashallahi, A., Aghababaeian, H., Nouri, M., Yadav, N., Mousavi, A., Salehi, S., & Ostadtaghizadeh, A. (2024). Definition and characteristics of climate-adaptive cities: A systematic review. BMC Public Health, 24(1), 1200. https://doi.org/10.1186/s12889-024-18591-x
Zanetti, V. B., De Sousa Junior, W. C., & De Freitas, D. M. (2016). A climate change vulnerability index and case study in a Brazilian coastal city. Sustainability, 8(8), 811. https://doi.org/10.3390/su8080811
Zeder, J., & Fischer, E. M. (2023). Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change. Advances in Statistical Climatology, Meteorology and Oceanography, 9(2), 83-102. https://doi.org/10.5194/ascmo-9-83-2023
Zong, L., Liu, S., Yang, Y., Ren, G., Yu, M., Zhang, Y., & Li, Y. (2021). Synergistic influence of local climate zones and wind speeds on the urban heat island and heat waves in the megacity of Beijing, China. Frontiers in Earth Science, 9, 673786. https://doi.org/10.3389/feart.2021.673786
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hale Öncel

This work is licensed under a Creative Commons Attribution 4.0 International License.


