The CODASC database for analyzing the impact of morpho-climatic characteristics of canyon streets on the concentration of air pollutants
DOI:
https://doi.org/10.47818/DRArch.2025.v6i1159Keywords:
air pollutant concentrations, canyon streets, city of Algiers, CODASC database, morpho-climatic parametersAbstract
Canyon-type urban street is one of the urban forms in which critical and harmful situations for health and the urban environment are appearing today, such as urban heat island, areas of poor ventilation, and retention areas for pollutants emitted by road traffic, heating, and concentration of industrial activities. The higher pollution levels are due to inappropriate relationships between morphological and microclimatic parameters specific to urban street canyons. Previous studies have mentioned the most common ones, namely the aspect ratio (H/W), the orientation of the street to the prevailing winds, and the vegetation. In the city of Algiers, the urban street canyon is very noticeable in two dominant urban fabrics, the medieval organic fabric and the colonial fabric dating back to the French occupation. This paper aims to explain the effect of different factors specific to urban canyons in Algiers on the concentration trend of air pollutants. By adopting the CODASC database containing data on normalized average pollutant concentrations (C+) related to different canyon street models according to aspect ratios H/W values, wind flow direction (α), tree stand density (ρs), and tree crown porosity (PVol). The results showed that LARBI BEN M'HIDI Street is more polluted than MOHAMED AZOUZI Street due to the effect of the maximum values of the aspect ratio and the density of trees on the wind behavior. The study results could provide a strategic guide for pollution mitigation to be used by urban planners in the design and implementation phases of sustainable urban development projects in Algiers.
Metrics
References
- Abderrahim, H., Chellali, M. R., & Hamou, A. (2016). Forecasting PM10 in Algiers: Efficacy of multilayer perceptron networks. Environmental Science and Pollution Research, 23(2), 1634–1641. https://doi.org/10.1007/s11356-015-5406-6
- Abhijith, K. V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., Di Sabatino, S., & Pulvirenti, B. (2017). Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmospheric Environment, 162(8), 71–86. https://doi.org/10.1016/j.atmosenv.2017.05.014
- Ali-Khodja, H., Belaala, A., Demmane-Debbih, W., Habbas, B., & Boumagoura, N. (2008). Air quality and deposition of trace elements in Didouche Mourad, Algeria. Environmental Monitoring and Assessment, 138(1–3), 219–231. https://doi.org/10.1007/s10661-007-9792-1
- Athamena, K. (2012). Modélisation et simulation des microclimats urbains : Etude de l’impact de la morphologie urbaine sur le confort dans les espaces extérieurs. Cas des Eco-Quartiers (Doctoral dissertation, Ecole Centrale de Nantes (ECN). https://theses.hal.science/tel-00811583/
- Baik, J. J., & Kim, J. J. (1999). A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons. Journal of Applied Meteorology, 38(11), 1576_1589. https://doi.org/https://doi.org/10.1175/1520-0450(1999)038<1576:ANSOFA>2.0.CO;2
- Baron, R., & Saffell, J. (2017). Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: A review. ACS Sensors, 2(11), 1553–1566. https://doi.org/10.1021/ACSSENSORS.7B00620/ASSET/IMAGES/MEDIUM/SE-2017-00620N_0018.GIF
- Belamri, M., Bounemia, L., Azbouche, A., Boukeffoussa, K., & Chaouch, C. L. (2017). Assessment of air pollution by heavy metals in the urban center of Algiers. Australian Journal of Basic and Applied Sciences, 11(5), 35_44. https://d1wqtxts1xzle7.cloudfront.net/76615102/35_44_libre.pdf?1639772578=&response_content_disposition=inline%3B+filename%3DAssessment_of_air_pollution_by_heavy_met.pdf&Expires=1725183994&Signature=R~DItKGlWTqmbty57k5PXtqoliS8xea4jsf1FMC8KdUFkQILo-UAYYtw
- Belarbi, N., Belamri, M., Dahmani, B., & Benamar, M. A. (2020). Road traffic and PM10, PM2.5 emission at an urban area in Algeria: Identification and statistical analysis. Pollution, 6(3), 651–660. https://doi.org/10.22059/POLL.2020.294710.730
- Belhout, D., Kerbachi, R., Relvas, H., & Miranda, A. I. (2018). Air quality assessment in Algiers city. Air Quality, Atmosphere and Health, 11(8), 897–906. https://doi.org/10.1007/s11869-018-0589-x
- Belhout, D., Relvas, H., Haddad, B., Kerbachi, R., & Miranda, A. I. (2021). Impact of energy efficiency policies on the air quality of a North African urban area: Emission scenarios by the horizon 2030. Energy Efficiency, 14(8), 1–14. https://doi.org/10.1007/s12053-021-09986-5
- Benabadji, N., Rahal, F., & Menakh, I. N. (2024). Datalogger prototyping for NH3 ground concentrations measures and comparison with NH3-IASI generated datamaps. AIUB Journal of Science and Engineering (AJSE), 23(2), 177–185. https://doi.org/10.53799/AJSE.V23I2.826
- Benselhoub, A. M., Kharytonov, M. M., Zaichenko, A. O., & Stankevich, S. A. (2015). Environmental risks of man-made air pollution in Grand Algiers. Journal of the Georgian Geophysical Society, 18(19), 43–51. https://ggs.openjournals.ge/index.php/GGS/article/view/1748
- Boppana, V. B. L., Wise, D. J., Ooi, C. C., Zhmayev, E., & Poh, H. J. (2019). CFD assessment on particulate matter filters performance in urban areas. Sustainable Cities and Society, 46(January), 101376. https://doi.org/10.1016/j.scs.2018.12.004
- Boubezari, M. (2021). Which urban development for Algiers far from oil dependency? Towards TOD solution. 56th ISOCARP World Planning Congress in Doha, Qatar International Society of City and Regional Planners. https://doi.org/10.47472/jxdr4596
- Boughedaoui, M., Kerbachi, R., Kessali, D., & Joumard, R. (2004). Mesure de la pollution plombifère dans l’air ambiant d’Alger. Pollution Atmospherique, 46(181), 105–112. https://doi.org/10.4267/pollution-atmospherique.1602
- Buccolieri, R., Carlo, O. S., Rivas, E., Santiago, J. L., Salizzoni, P., & Siddiqui, M. S. (2022). Obstacles influence on existing urban canyon ventilation and air pollutant concentration: A review of potential measures. Building and Environment, 214(2), 108905. https://doi.org/10.1016/j.buildenv.2022.108905
- Buccolieri, R., Salim, S. M., Leo, L. S., Di Sabatino, S., Chan, A., Ielpo, P., de Gennaro, G., & Gromke, C. (2011). Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction. Atmospheric Environment, 45(9), 1702–1713. https://doi.org/10.1016/j.atmosenv.2010.12.058
- Cebi Kilicoglu, M., & Zeren Cetin, I. (2024). Determination of the suitable biomonitors to be used in monitoring the change for reducing the concentration of v in areas with high-level of air pollution. Bulletin of Environmental Contamination and Toxicology, 113(6), 63. https://doi.org/10.1007/S00128-024-03966-Y/METRICS
- Cetin, M., Adiguzel, F., & Zeren Cetin, I. (2023). Determination of the effect of urban forests and other green areas on surface temperature in Antalya. In Concepts and Applications of Remote Sensing in Forestry (pp. 319–336). Springer, Singapore. https://doi.org/10.1007/978-981-19-4200-6_16
- Cetin, M., Cebi Kilicoglu, M., & Kocan, N. (2023). Usability of biomonitors in monitoring the change of tin concentration in the air. Environmental Science and Pollution Research, 30(52), 112357–112367. https://doi.org/10.1007/S11356-023-30277-2/METRICS
- Cetin, M., Sevik, H., Koc, I., & Zeren Cetin, I. (2023). The change in biocomfort zones in the area of Muğla province in near future due to the global climate change scenarios. Journal of Thermal Biology, 112, 103434. https://doi.org/10.1016/J.JTHERBIO.2022.103434
- Cevik Degerli, B., & Cetin, M. (2023). Evaluation of UTFVI index effect on climate change in terms of urbanization. Environmental Science and Pollution Research, 30(30), 75273–75280. https://doi.org/10.1007/S11356-023-27613-X/METRICS
- CODASC. (2022). Laboratory of building and Karlsruhe Institute of Technology KIT. Accessed on 19 December 2022. https://www.umweltaerodynamik.de/bilder-originale/CODA/CODASC.html
- da Silva, F. T., Reis Jr, N. C., Santos, J. M., Goulart, E. V., & de Alvarez, C. E. (2022). Influence of urban form on air quality: The combined effect of block typology and urban planning indices on city breathability. Science of the Total Environment, 814(3), 152670. https://doi.org/10.1016/j.scitotenv.2021.152670
- Di Bernardino, A., Monti, P., Leuzzi, G., & Querzoli, G. (2018). Pollutant fluxes in two-dimensional street canyons. Urban Climate, 24(7), 80–93. https://doi.org/10.1016/j.uclim.2018.02.002
- Fouzia, B., & Bourbia, F. (2011). Impact de la geometrie des canyons urbains sur le confort thermique exterieur dans un climat semi aride,cas du coudiat de constantine. The Egyptian Journal Of Environmental Change, 3(1), 62_67. https://www.researchgate.net/publication/322527419_Impact_de_la_geometrie_des_canyons_urbains_sur_le_confort_thermique_exterieur_dans_un_climat_semi_aride-cas_du_coudiat_de_constantine
- Gromke, C. B. (2013). CODASC: A database for the validation of street canyon dispersion models. In Proceedings of the 15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (HARMO), May 6-9, Madrid, Spain.
- Gromke, C., Buccolieri, R., Di Sabatino, S., & Ruck, B. (2008). Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations - Evaluation of CFD data with experimental data. Atmospheric Environment, 42(37), 8640_8650. https://doi.org/10.1016/j.atmosenv.2008.08.019
- Gromke, C., & Ruck, B. (2008). Aerodynamic modelling of trees for small-scale wind tunnel studies. Forestry, 81(3), 243–258. https://doi.org/10.1093/forestry/cpn027
- Gromke, C., & Ruck, B. (2012). Pollutant concentrations in street canyons of different aspect ratio with avenues of trees for various wind directions. Boundary-Layer Meteorology, 144(1), 41–64. https://doi.org/10.1007/s10546-012-9703-z
- Hang, J., Liang, J., Wang, X., Zhang, X., Wu, L., & Shao, M. (2022). Investigation of O3–NOx–VOCs chemistry and pollutant dispersion in street canyons with various aspect ratios by CFD simulations. Building and Environment, 226(12), 109667. https://doi.org/10.1016/j.buildenv.2022.109667
- Hankey, S., & Marshall, J. D. (2017). Urban form, air pollution, and health. Current Environmental Health Reports, 4(4), 491–503. https://doi.org/10.1007/s40572-017-0167-7
- Hassan, S., Akter, U. H., Nag, P., Molla, M. M., Khan, A., & Hasan, M. F. (2022). Large-eddy simulation of airflow and pollutant dispersion in a model street canyon intersection of Dhaka city. Atmosphere, 13(7), 1028. https://doi.org/10.3390/atmos13071028
- He, B. J., Ding, L., & Prasad, D. (2019). Enhancing urban ventilation performance through the development of precinct ventilation zones: A case study based on the Greater Sydney, Australia. Sustainable Cities and Society, 47(5), 101472. https://doi.org/10.1016/j.scs.2019.101472
- Hong, B., Lin, B., & Qin, H. (2017). Numerical investigation on the effect of avenue trees on PM2.5 dispersion in urban street canyons. Atmosphere, 8(7), 129. https://doi.org/10.3390/atmos8070129
- Huang, Y. D., Hou, R. W., Liu, Z. Y., Song, Y., Cui, P. Y., & Kim, C. N. (2019). Effects of wind direction on the airflow and pollutant dispersion inside a long street canyon. Aerosol and Air Quality Research, 19(5), 1152–1171. https://doi.org/10.4209/aaqr.2018.09.0344
- Huang, Y., Lei, C., Liu, C. H., Perez, P., Forehead, H., Kong, S., & Zhou, J. L. (2021). A review of strategies for mitigating roadside air pollution in urban street canyons. Environmental Pollution, 280(7), 116971. https://doi.org/10.1016/j.envpol.2021.116971
- Ibrir, A., Kerchich, Y., Hadidi, N., Merabet, H., & Hentabli, M. (2021). Prediction of the concentrations of PM1, PM2.5, PM4, and PM10 by using the hybrid dragonfly-SVM algorithm. Air Quality, Atmosphere and Health, 14(3), 313–323. https://doi.org/10.1007/s11869-020-00936-1
- Journal Officiel de la République Algérienne Démocratique et Populaire N°10. (2006). Conventions et accords internationaux – Lois et décrets arrêtés, décisions, avis, communications et annonces. https://www.joradp.dz/FTP/jo-francais/2006/F2006010.pdf
- Karttunen, S., Kurppa, M., Auvinen, M., Hellsten, A., & Järvi, L. (2020). Large-eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations – A case study from a city-boulevard. Atmospheric Environment: X, 6(12), 100073. https://doi.org/10.1016/j.aeaoa.2020.100073
- Kerbachi, R., Boughedaoui, M., Bounoua, L., & Keddam, M. (2006). Ambient air pollution by aromatic hydrocarbons in Algiers. Atmospheric Environment, 40(21), 3995_4003. https://doi.org/10.1016/j.atmosenv.2006.02.033
- Kerbachi, R., Boughedaoui, M., Koutai, N., & Lakki, T. (1998). La pollution par les oxydes d’azote et l’ozone a Alger. Pollution Atmospherique, 158, 89–101. https://doi.org/10.4267/pollution-atmospherique.3520
- Kerchich, Y., & Kerbachi, R. (2012). Measurement of BTEX (benzene, toluene, ethybenzene, and xylene) levels at urban and semirural areas of Algiers City using passive air samplers. Journal of the Air and Waste Management Association, 62(12), 1370–1379. https://doi.org/10.1080/10962247.2012.712606
- Ladji, R., Yassaa, N., Balducci, C., Cecinato, A., & Meklati, B. Y. (2009). Annual variation of particulate organic compounds in PM10 in the urban atmosphere of Algiers. Atmospheric Research, 92(2), 258–269. https://doi.org/10.1016/j.atmosres.2008.12.002
- Li, Z., Shi, T., Wu, Y., Zhang, H., Juan, Y. H., Ming, T., & Zhou, N. (2020). Effect of traffic tidal flow on pollutant dispersion in various street canyons and corresponding mitigation strategies. Energy and Built Environment, 1(3), 242–253. https://doi.org/10.1016/j.enbenv.2020.02.002
- Maag, B., Zhou, Z., & Thiele, L. (2018). A survey on sensor calibration in air pollution monitoring deployments. IEEE Internet of Things Journal, 5(6), 4857–4870. https://doi.org/10.1109/JIOT.2018.2853660
- Makar, P. A., Stroud, C., Akingunola, A., Zhang, J., Ren, S., Cheung, P., & Zheng, Q. (2021). Vehicle-induced turbulence and atmospheric pollution. Atmospheric Chemistry and Physics, 21(16), 12291–12316. https://doi.org/10.5194/acp-21-12291-2021
- Miao, C., Yu, S., Hu, Y., Bu, R., Qi, L., He, X., & Chen, W. (2020). How the morphology of urban street canyons affects suspended particulate matter concentration at the pedestrian level: An in-situ investigation. Sustainable Cities and Society, 55(4), 102042. https://doi.org/10.1016/j.scs.2020.102042
- Miao, C., Yu, S., Zhang, Y., Hu, Y., He, X., & Chen, W. (2023). Assessing outdoor air quality vertically in an urban street canyon and its response to microclimatic factors. Journal of Environmental Sciences, 124(2), 923–932. https://doi.org/10.1016/j.jes.2022.02.021
- Muniz-Gäal, L. P., Pezzuto, C. C., Carvalho, M. F. H. de, & Mota, L. T. M. (2020). Urban geometry and the microclimate of street canyons in tropical climate. Building and Environment, 169(2), 106547. https://doi.org/10.1016/j.buildenv.2019.106547
- Nejjari, C., Filleul, L., Zidouni, N., Laid, Y., Atek, M., Meziane, A. El, & Tessier, J. F. (2003). La pollution atmosphérique, un nouveau risque respiratoire pour les villes du sud. Int J Tuberc Lung Dis, 7(3), 223–231. https://d1wqtxts1xzle7.cloudfront.net/33638229/Article_IJTLD_2003_libre.pdf?1399356743=&response_content_disposition=inline%3B+filename%3DINT_J_TUBERC_LUNG_DIS_7_3_223_231_2003_I.pdf&Expires=1725182427&Signature=M5jSqJyxG5WSb3AC6VFXMJTk-VD8cnA7vIkPaOE9VDc
- Neofytou, P., Venetsanos, A. G., Rafailidis, S., & Bartzis, J. G. (2006). Numerical investigation of the pollution dispersion in an urban street canyon. Environmental Modelling and Software, 21(4), 525–531. https://doi.org/10.1016/j.envsoft.2004.08.012
- OECD. (2014). The cost of air pollution: Health impacts of road transport, OECD Publishing. http://dx.doi.org/10.1787/9789264210448-en
- Oucher, N., & Kerbachi, R. (2012). Evaluation of air pollution by aerosol particles due to road traffic: A case study from Algeria. Procedia Engineering, 33(2009), 415_423. https://doi.org/10.1016/j.proeng.2012.01.1221
- Oucher, N., Kerbachi, R., Ghezloun, A., & Merabet, H. (2015). Magnitude of air pollution by heavy metals associated with aerosols particles in Algiers. Energy Procedia, 74(8), 51_58. https://doi.org/10.1016/j.egypro.2015.07.520
- Peng, Y., Gao, Z., Buccolieri, R., & Ding, W. (2019). An investigation of the quantitative correlation between urban morphology parameters and outdoor ventilation efficiency indices. Atmosphere, 10(1). https://doi.org/10.3390/atmos10010033
- Rahal, F. (2020). Low-cost sensors, an interesting alternative for air quality monitoring in Africa. Clean Air Journal, 30(2), 1–2. https://doi.org/10.17159/CAJ/2020/30/2.9223
- Rahal, F., Benabadji, N., Bencherif, M., & Bencherif, M. M. (2021). Development of a low-cost outdoor carbon monoxyde analyser applied to the city of Oran, Algeria. Journal of Fundamental and Applied Sciences, 13(3), 1495–1510. https://doi.org/10.4314/jfas.v13i3.22
- Rahal, F., Benharrats, N., Blond, N., Clappier, A., & Ponche, J. L. (2014). Modelling of air pollution in the area of Algiers city, Algeria. International Journal of Environment and Pollution, 54(1), 32–58. https://doi.org/10.1504/IJEP.2014.064049
- Rahal, F., Rezak, S., & Benabadji, N. (2020). Evaluation of the impact of the COVID-19 pandemic on photochemical pollution in urban areas. Environmental Health Engineering and Management Journal, 7(4), 237–243. https://doi.org/10.34172/EHEM.2020.28
- Rahal, F., Rezak, S., & Benabadji, N. (2021). Influence de la pandémie du COVID-19 sur la pollution par le dioxyde d’azote dans la ville d’Oran, Algérie. Algerian Journal of Health Sciences, 3(2), 52–57. https://doi.org/10.5281/zenodo.4657587
- Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti, C., Yasar, A., & Rickerby, D. (2017). End-user perspective of low-cost sensors for outdoor air pollution monitoring. Science of The Total Environment, 607–608, 691–705. https://doi.org/10.1016/J.SCITOTENV.2017.06.266
- Sabatino, S. Di, Buccolieri, R., Pulvirenti, B., & Britter, R. E. (2008). Flow and pollutant dispersion in street canyons using FLUENT and ADMS-urban. Environmental Modeling and Assessment, 13(3), 369–381. https://doi.org/10.1007/s10666-007-9106-6
- Salmond, J. A., Williams, D. E., Laing, G., Kingham, S., Dirks, K., Longley, I., & Henshaw, G. S. (2013). The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon. Science of the Total Environment, 443(1), 287–298. https://doi.org/10.1016/j.scitotenv.2012.10.101
- Tabti-Talamali, A., & Baouni, T. (2018). Public transportation in Algiers: Towards a new governance approach. Case Studies on Transport Policy, 6(4), 706–715. https://doi.org/10.1016/j.cstp.2018.08.009
- Talbi, A., Kerchich, Y., Kerbachi, R., & Boughedaoui, M. (2018). Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environmental Pollution, 232(1), 252–263. https://doi.org/10.1016/j.envpol.2017.09.041
- Tan, W., Li, C., Wang, K., Zhu, G., & Liu, L. (2019). Geometric effect of buildings on the dispersion of carbon dioxide cloud in idealized urban street canyons. Process Safety and Environmental Protection, 122(2), 271–280. https://doi.org/10.1016/j.psep.2018.12.020
- Tao, Y., Zhang, Z., Ou, W., Guo, J., & Pueppke, S. G. (2020). How does urban form influence PM2.5 concentrations: Insights from 350 different-sized cities in the rapidly urbanizing Yangtze River Delta region of China, 1998–2015. Cities, 98(10), 102581. https://doi.org/10.1016/j.cities.2019.102581
- Tasić, V., Jovašević-Stojanović, M. Topalović, D., & Davidović, M. (2016). Measurement of PM 2 . 5 concentrations in indoor air using low-cost sensors and Arduino platforms. In Proceedings of the 6 Th Scientific Meeting EuNetAir, 10, 69–72. https://doi.org/10.5162/6EuNetAir2016/18
- Terniche, M., Laid, Y., Guerinik, M., & Taright, S. (2018). Symptômes respiratoires et pollution de l’air par les PM10 à Alger : Problèmes et perspectives. Revue Des Maladies Respiratoires, 35(1), A231–A232. https://doi.org/https://doi.org/10.1016/j.rmr.2017.10.537
- Uslu, D. Y., Almansouri, H. M. S., Elahsadi, A. H. M., &, & Çetin, M. (2024). Towards sustainable cities : Evaluating the distribution and functionality of green spaces in Atakum. Journal of Design for Resilience in Architecture and Planning, 5(3), 461_476. https://doi.org/https://doi.org/10.47818/DRArch.2024.v5i3143
- Vardoulakis, S., Fisher, B. E. A., Pericleous, K., & Gonzalez-Flesca, N. (2003). Modelling air quality in street canyons: A review. Atmospheric Environment, 37(2), 155–182. https://doi.org/10.1016/S1352-2310(02)00857-9
- Voordeckers, D., Lauriks, T., Denys, S., Billen, P., Tytgat, T., & Van Acker, M. (2021). Guidelines for passive control of traffic-related air pollution in street canyons: An overview for urban planning. Landscape and Urban Planning, 207(6), 103980. https://doi.org/10.1016/j.landurbplan.2020.103980
- Voordeckers, D., Meysman, F. J. R., Billen, P., Tytgat, T., & Van Acker, M. (2021). The impact of street canyon morphology and traffic volume on NO2 values in the street canyons of Antwerp. Building and Environment, 197(2), 107825. https://doi.org/10.1016/j.buildenv.2021.107825
- Vos, P. E. J., Maiheu, B., Vankerkom, J., & Janssen, S. (2013). Improving local air quality in cities: To tree or not to tree? Environmental Pollution, 183(12), 113–122. https://doi.org/10.1016/j.envpol.2012.10.021
- Vranckx, S., Vos, P., Maiheu, B., & Janssen, S. (2015). Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium. Science of the Total Environment, 532(11), 474–483. https://doi.org/10.1016/j.scitotenv.2015.06.032
- Wang, L., Tian, W. X., Zhao, X. Y., & Huang, C. Q. (2022). Numerical simulation of the effects of canopy properties on airflow and pollutant dispersion in street canyons. Indoor and Built Environment, 31(2), 466–478. https://doi.org/10.1177/1420326X211005174
- World Health Organization (WHO). (2016). Ambient air pollution: A global assessment of exposure and burden of disease. https://iris.who.int/bitstream/handle/10665/250141/?sequence=1
- World Health Organization (WHO). (2021). WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&
- Wu, L., Hang, J., Wang, X., Shao, M., & Gong, C. (2021). APFoam 1.0: Integrated computational fluid dynamics simulation of O3-NOx-volatile organic compound chemistry and pollutant dispersion in a typical street canyon. Geoscientific Model Development, 14(7), 4655–4681. https://doi.org/10.5194/gmd-14-4655-2021
- Wu, W., Li, L., & Li, C. (2021). Seasonal variation in the effects of urban environmental factors on land surface temperature in a winter city. Journal of Cleaner Production, 299(5), 126897. https://doi.org/10.1016/j.jclepro.2021.126897
- Yang, J., Shi, B., Zheng, Y., Shi, Y., & Xia, G. (2020). Urban form and air pollution disperse: Key indexes and mitigation strategies. Sustainable Cities and Society, 57(6), 101955. https://doi.org/10.1016/j.scs.2019.101955
- Yi, W. Y., Lo, K. M., Mak, T., Leung, K. S., Leung, Y., & Meng, M. L. (2015). A survey of wireless sensor network based air pollution monitoring systems. Sensors 2015, Vol. 15, Pages 31392-31427, 15(12), 31392–31427. https://doi.org/10.3390/S151229859
- Yuan, C., Ng, E., & Norford, L. K. (2014). Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Building and Environment, 71(2), 245–258. https://doi.org/10.1016/j.buildenv.2013.10.008
- Zeren Cetin, I. (2024a). Optimizing plant biomonitoring for cd pollution. Water, Air, and Soil Pollution, 235(10), 1–8. https://doi.org/10.1007/S11270-024-07466-X/METRICS
- Zeren Cetin, I. (2024b). The effects of Sinop province ’ s relative humidity values on bioclimatic comfort and urban and landscape planning. Journal of Design for Resilience in Architecture and Planning, 5(3), 401–408. https://doi.org/10.47818/DRArch.2024.v5i3139
- Zeren Cetin, I. (2024c). Used in urban area for landscape planning and design spatial and temporal variations in chromium (Cr) concentrations in picea orientalis l. Turkish Journal of Agriculture - Food Science and Technology, 12(10), 1730–1738. https://doi.org/10.24925/TURJAF.V12I10.1730-1738.7093
- Zeren Cetin, I., Varol, T., & Ozel, H. B. (2023). A geographic information systems and remote sensing–based approach to assess urban micro-climate change and its impact on human health in Bartin, Turkey. Environmental Monitoring and Assessment, 195(5), 1–14. https://doi.org/10.1007/S10661-023-11105-Z/METRICS
- Zeren Cetin, I., Varol, T., Ozel, H. B., & Sevik, H. (2023). The effects of climate on land use/cover: A case study in Turkey by using remote sensing data. Environmental Science and Pollution Research, 30(3), 5688–5699. https://doi.org/10.1007/S11356-022-22566-Z/METRICS
- Zhang, Y., Gu, Z., & Yu, C. W. (2020). Impact factors on airflow and pollutant dispersion in urban street canyons and comprehensive simulations: A review. Current Pollution Reports, 6(4), 425_439. https://doi.org/10.1007/s40726-020-00166-0
- Zheng, X., Montazeri, H., & Blocken, B. (2022). Impact of building façade geometrical details on pollutant dispersion in street canyons. Building and Environment, 212(10), 108746. https://doi.org/10.1016/j.buildenv.2021.108746
Downloads
Published
How to Cite
License
Copyright (c) 2025 Loubna Khellaf, Meriem Naimi Ait-Aoudia, Farid Rahal
License

This work is licensed under a Creative Commons Attribution 4.0 International License.